Direct methods - Bocop

P. Martinon
Inria Saclay, CMAP Ecole Polytechnique

03/09/2018
CIMICON - Toulouse
Optimal Control Problem: formulation

Variables:
- $y(\cdot)$ state (describe the system, subject to ODE)
- $u(\cdot)$ control (action on the system)
- $z(\cdot)$ algebraic variables (similar to controls)
- π scalar parameters

\[
\begin{align*}
\text{Min } J(\cdot) &= \int_0^T l(t, y(t), u(t))\,dt \\
&\quad + g_0(T, y(0), y(T)) \\
\dot{y}(t) &= f(t, y(t), u(t)) \\
\Phi_l &\leq \Phi(y(0), y(T)) \leq \Phi_u \\
g_l &\leq g(t, y(t), u(t)) \leq g_u
\end{align*}
\]

(OCP)
Optimal Control Problem: functions

- **Objective:** $\text{Min } J(\cdot)$
 Can include running cost and/or final cost (Lagrange, Mayer, Bolza forms).

- **Dynamics:** $\dot{y} = f(t, y, u)$
 ODE for state dynamics, may include *delay* terms depending on past state/control.

- **Boundary conditions:** $\Phi_l \leq \Phi(y(0), y(T)) \leq \Phi_u$
 Constraints on initial and final states, including periodicity.
 Also scalar constraints involving parameters.

- **Path constraints:** $g_l \leq g(t, y, u) \leq g_u$
 Running constraints on state and/or control at all times:
 basic bounds, pure constraints, mixed constraints.
Optimal Control Problem: methods

HJB (cf Dynamic Programing) (global)
Bellman’s optimality principle: value function V solution of a PDE. From V reconstruct optimal trajectories. Full discretization: t, y, u
+ global, switches, stochastic, feedback control
- costly (state dimension), free T, periodicity, state constraints

Indirect methods (local)
Pontryagin’s Maximum Principle: control elimination (maximize Hamiltonian). Boundary Value Problem; shooting or collocation
+ fast, accurate
- sensitive to adjoint initialization, singular / constrained arcs

Direct methods (direct transcription) (local)
Time discretization: Nonlinear Programming; interior point or SQP
+ handy for singular/constrained arcs, parameters, model Id
- accuracy can be limited by discretization / structure
Direct method: time discretization

Time discretization: \((t_i)_{i=0..N}\), usually uniform with step \(h\)
New state and control variables: \((y_i, u_i) = X\)
OCP is reformulated in terms of unknown \(X\)

- objective: final cost \(g_0(t_N, y_0, y_N)\), running cost as sum of terms \(l(t_i, y_i, u_i)\)
- boundary conditions: \(\Phi(X_0, X_N)\)
- path constraints: \(g(t_i, y_i, u_i), i = 0 \ldots N\)
- dynamics (ex:Euler): \(y_{i+1} = y_i + h f(t_i, y_i, u_i), i = 0 \ldots N - 1\)

This gives a discretized problem (NLP)

\[
\begin{align*}
\min \ F(X) \\
C_{LB} \leq C(X) \leq C_{UB}
\end{align*}
\]

\(\rightarrow\) solve (NLP) as approximation of (OCP)
Note: KKT for NLP tends to PMP for OCP when \(h \rightarrow 0\)
Direct method: Runge Kutta formulas

General RK formula: \(s \) stages and coefficients \(a_{ij}, b_i, c_i \).

Conditions: \(\sum_{i=1}^{s} b_i = 1 \) and \(c_i = \sum_{j=1}^{i-1} a_{ij} \)

Butcher form

\[
\begin{array}{cccc}
 c_1 & a_{11} & a_{12} & \ldots & a_{1s} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_s & a_{s1} & a_{s2} & \ldots & a_{ss} \\
\end{array}
\begin{array}{c}
 b_1 \\
 b_2 \\
 \vdots \\
 b_s \\
\end{array}
\]

The formula for one step at time \(t_\ell \) is

\[
y(t_{\ell+1}) = y(t_\ell) + h \sum_{i=1}^{s} b_i k_i^\ell, \quad k_i^\ell = f(t_\ell + c_i h, y(t_\ell) + h \sum_{j=1}^{s} a_{ij} k_j^\ell)
\]

The \(k_i^\ell \) are either part of \(X \), or computed (harder for implicit case).

Remark: \(A \) is strictly lower triangular for explicit methods.

Example: explicit/implicit euler, RK4, Gauss, Lobatto...

Properties: RK formulas can be symmetric (time reversible), symplectic (invariant conservation, such as energy)
Direct method: state and control variables

State variables: 2 approaches
- 'Sequential': set $X = (u_i)$ only, recompute state y_i by RK formula
 Smaller problem, but requires solving for implicit RK methods...
- 'Simultaneous': set $X = (y_i, k_j^i, u_i)$, enforce RK formulas as equality constraints at each time step and stages.
 Easy implementation of implicit RK formulas (better properties).
 Simultaneous approaches seem more effective overall.

Control variables
In RK formula dynamics f is evaluated at time stages $t_\ell + c_i h$.
Control variables are actually at stages, ie u_i^j (same as k_j^i).
Consequence: path constraints g at stages too, with state
$y(t_\ell) + h \sum_{j=1}^{s} a_{ij} k_j^\ell$

Note: $C(X)$ structure gives strongly sparse derivatives.
Direct method: solving the NLP

2 popular families of methods: SQP and IP.

Sequential Quadratic Programming (SQP)
At each iterate X^k:
- linearization of constraints, quadratic objective with Lagrangian term
- solve the resulting QP problem for X^{k+1}

Interior point (IP)
Constrained problem $(P) \ min F(X), C(X) \geq 0$
Penalize constraints with barrier functions: unconstrained problem $(P_\mu) \ min F(X) - \mu \sum_{i=1}^{m} \log C_i(X)$
When $\mu \to 0$, solution of $(P_\mu) \to$ solution of (P).
Direct method: derivatives

Both SQP and IP solvers typically require
- gradient of the objective $F(Z)$
- hessian of the lagrangian $L(Z, \lambda) = F(Z) + \lambda C(Z)$

- **Finite differences**
 Allows black boxes, but requires step choice

- **Automatic differentiation**
 - source generation (**TAPENADE**)
 Generated code can be modified. Or may require to be fixed ...
 - operator overloading (**ADOL-C, CPPAD**)
 No additional code, but some limitations (no if...then...)

NB. Take advantage of hessian sparsity for numerical efficiceny!
In practice: tips and tricks

- running cost
- free final time
- constraints: bounds, mixed/pure, periodicity
- control structure: bang, singular, constrained arcs
- scalar parameters and model identification
- delay problems
- time discretization tradeoffs
- definition / differentiability domains
- NLP starting guess
- OS, compiler and library quirks
Running cost
Reformulate as final cost with an additional state variable
\[\text{Min } x_{obj}(T) \text{ with } \dot{x}_{obj} = 1 \text{ and } x_{obj}(0) = 0 \]

Free final time
Renormalize time to \([0, 1]\) and multiply dynamics by \(T\).
\(T\) is an additional parameter of \(X\) to be optimized.
NB. Remember to bound \(T \geq \epsilon > 0\)! Upper bound \(T \leq M\) may be useful for non minimum-time problems.

Constraints
- Periodicity: boundary conditions on \((X_0, X_N)\), part of \(C(X)\)
- Bounds for state, control, parameters: bounds for components \(X_i\)
- Mixed constraints \(g(x, u)\): transcripted automatically in \(C(X)\)
- Pure state constraints \(h(x)\): idem. No additional work.
Control structure:

No structure assumptions or junction conditions

Control variables are components of \(X \) just like state variables. **Bang arcs**: appear naturally in solution (up to discretization)
Singular arcs: likewise (junctions may exhibit glitch points)
Constrained arcs: likewise (possible oscillations on the boundary)

See Fuller, Goddard, regulator examples
Optimize scalar parameters
Scalar parameters are simply added to the unknown X.
Example: free final time T, design parameters ...
No need to define a constant state variable.
Parameters can have bounds and more general constraints (defined as boundary conditions).

Model identification
System model may include parameters which values are not known.
Provided a set of experimental measures for a given control.
Solve OCP with fixed control and free parameters, minimizing the error between trajectory and measures (e.g. mean square error).
See example Jackson

Algebraic variables
Additional unknown $z(t)$, may appear in dynamics / constraints.
In practice, behaves like a control.
Time discretization
Direct methods solve a **discretized** approximation of OCP.
- higher order gives more accuracy (if sufficient smoothness !)
Drawback: larger problem size and cpu time; risk of numerical instabilities.
- smaller time step increases accuracy, but also size and cpu time.
Advice: start with low order (implicit midpoint), play a bit with time step.

Delay problems
Dynamics and/or constraints depend on 'past' states or controls.
\[\dot{y}(t) = f(t, y(t), u(t), y(t - \tau), u(t - \theta)) \]
Direct (simultaneous) method: \(X \) contains states \(y_i \) for all times \(t_i \).
'Past' values can be approximated by interpolation.
Technical limitation: fixed final time.
Remark: 'future' values could be interpolated as well...
Build or execution errors
Try to understand compiler errors and warnings. Use debug build for more information. Careful with indexes, function definition / differentiability domains. Do not hesitate to reformulate the problem.

Platform quirks
Depending on OS, compiler, libraries: different results? *same source code → different executable code.* A properly formulated problem should give the same solution regardless of the platform: differences indicate a non robust code!
NLP convergence issues
Check functions definition and differentiability domains.
Typical traps: $1/x$, \sqrt{x}, $Ln \ x$, $|x|$, $min(x, y)$...
Visualize arguments, add constraints if necessary.
Changing the starting guess may help.

NLP starting guess
NLP solver requires a starting guess X^0 (iterative algorithm).
X^0 needs **not** to be admissible for constraint C.
In particular X^0 does not have to satisfy the ODE!
That said, try to avoid completely unrealistic values...
Bocop: toolbox for optimal control problems

C/C++, linux/win/mac, GUI, EPL license

- Deterministic problems, model identification, delay systems
- Direct transcription method
 - Generalized Runge Kutta
 - interior point solver Ipopt
 - sparse automatic differentiation
- Robust and handy, but local method
Second package in the Bocop toolbox

- Stochastic problems, switched systems
- Global method, feedback control
- HJB method with Semi-Lagrangian (cf Dyn. Prog.)
- Limitations on state dimension
Bocop: problem files

A problem is defined in Bocop by

4 functions (C/C++)
- criterion.tpp: objective J (as final cost)
- dynamics.tpp: system dynamics f
- boundarycond.tpp: boundary conditions ϕ
- pathcond.tpp: path constraints g

3 definition files (text)
- problem.def: general definition and settings
- problem.bounds: bounds for Z and $C(Z)$
- problem.constants: constant parameters
- BOCOP: displays general messages (build, NLP iterations, ...)
- Definition: general definition and settings, bounds, constants
- Starting point: defines initial guess for NLP solver
- Optimization: settings for OCP and NLP
- Visualization: optimal solution (variables, constraints, multipliers)
Bocop: Goddard problem

1D rocket ascent with maximal final altitude

\[
\begin{aligned}
\text{max } & m(T) \\
\dot{r} &= v \\
\dot{v} &= -\frac{1}{r^2} + \frac{1}{m(T_{\text{max}})}(T_{\text{max}}u - D(r, v)) \\
\dot{m} &= -bu \\
u(\cdot) &\in [0, 1] \\
r(0) &= 1, \ v(0) = 0, m(0) = 1, \\
r(T) &= 1.01 \\
D(r(\cdot), v(\cdot)) &\leq C \\
T &\text{ free}
\end{aligned}
\]

Drag: \(D(r, v) = Av^2\rho(r) \) with \(\rho(r) = e^{-k(r-r_0)} \).

Parameters \(b = 7, T_{\text{max}} = 3.5, A = 310, k = 500 \) and \(r_0 = 1 \).

Typical solution is bang/singular with structure \(B^+SB^- \)
// Function for the dynamics of the problem
// dy/dt = dynamics(y,u,z,p)

#include "header_dynamics"
{
 // DYNAMICS FOR GODDARD PROBLEM
 // dr/dt = v
 // dv/dt = (Thrust(u) - Drag(r,v)) / m - grav(r)
 // dm/dt = -b*|u|

 double Tmax = constants[0];
 double A = constants[1];
 double k = constants[2];
 double r0 = constants[3];
 double b = constants[4];

 Tdouble r = state[0];
 Tdouble v = state[1];
 Tdouble m = state[2];

 state_dynamics[0] = v;
 state_dynamics[1] = (thrust(control[0],Tmax) - drag(r,v,A,k,r0)) / m - grav(r);
 state_dynamics[2] = - b * control[0];
}
// Function for the criterion of the problem
// Min criterion(z)

// Tdouble variables correspond to values that can change during optimization:
// states, controls, algebraic variables and optimization parameters.
// Values that remain constant during optimization use standard types (double,\
// int, ...).

#include "header_criterion"
{
 // CRITERION FOR GODDARD PROBLEM
 // MAXIMIZE FINAL MASS
 criterion = -final_state[2];
}
// Function for the initial and final conditions of the problem
// lb <= Phi(t0, y(t0), tf, y(tf), p) <= ub

// Tdouble variables correspond to values that can change during optimization:
// states, controls, algebraic variables and optimization parameters.
// Values that remain constant during optimization use standard types (double, int, ...).

#include "header_boundarycond"
{

 // INITIAL CONDITIONS FOR GODDARD PROBLEM
 // r0 = 1 v0 = 0 m0 = 1
 // MODELED AS 1 <= r0 <= 1, etc
 boundary_conditions[0] = initial_state[0];
 boundary_conditions[1] = initial_state[1];
 boundary_conditions[2] = initial_state[2];

 // FINAL CONDITIONS FOR GODDARD PROBLEM
 // rf >= 1.01 MODELED AS 1.01 <= rf
 boundary_conditions[3] = final_state[0];

}
Listing 4: goddard/pathcond.tpp

```cpp
// Function for the path constraints of the problem
// a <= g(t,y,u,z,p) <= b

// Tdouble variables correspond to values that can change during optimization:
// states, controls, algebraic variables and optimization parameters.
// Values that remain constant during optimization use standard types (double, int, ...).

#include "header_pathcond"
{
    // CONSTRAINT ON MAX DRAG FOR GODDARD PROBLEM
    // Drag <= C ie Drag - C <= 0

    double A = constants[1];
    double k = constants[2];
    double r0 = constants[3];
    double C = constants[5];

    Tdouble r = state[0];
    Tdouble v = state[1];

    path_constraints[0] = drag(r, v, A, k, r0) - C;
}
```

Remember to set bounds values!
Auxiliary functions:
- declared in dependencies.hpp
- defined in dependencies.tpp if using Tdouble variables
- defined in dependencies.cpp if not using Tdouble variables

Listing 5: goddard/dependencies.hpp

```
// function for the goddard drag
template <class Tdouble> Tdouble drag(const Tdouble, const Tdouble, const double, const double, const double);

// function for gravity
template <class Tdouble> Tdouble grav(const Tdouble);

// function for goddard thrust
template <class Tdouble> Tdouble thrust(const Tdouble, const double);
```
Listing 6: goddard/dependencies.tpp

```cpp
#include <cmath>

// FUNCTION FOR GODDARD DRAG
// \( \text{drag} = 310 \ v^2 \ exp \left(-500(r-1)\right) \)
template <class Tdouble> Tdouble drag(Tdouble r, Tdouble v, double A, double k, double r0)
{
    Tdouble drag = A * v * v * exp(-k*(fabs(r)-r0));
    return drag;
}

// FUNCTION FOR GRAVITY
// \( g = \frac{1}{r^2} \)
template <class Tdouble> Tdouble grav(Tdouble r)
{
    Tdouble grav = 1e0 / r / r;
    return grav;
}

// FUNCTION FOR THRUST (GODDARD)
// \( T = u \times T_{\text{max}} \)
template <class Tdouble> Tdouble thrust(Tdouble u, double Tmax)
{
    Tdouble thrust = u * Tmax;
    return thrust;
}
```
Bocop: Goddard problem (definition)

General definition (dimension, time discretization, ...).
Set lower and upper bounds for Z and $C(Z)$
Bocop: Goddard problem (initialization)

Starting guess for NLP solver (not necessarily feasible)
Bocop: Goddard problem (optimization)

Settings for optimization (initial guess, NLP solver, model identification...)

Ipopt options:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_iter</td>
<td>1000</td>
</tr>
<tr>
<td>print_level</td>
<td>5</td>
</tr>
<tr>
<td>tol</td>
<td>1.0e-14</td>
</tr>
<tr>
<td>output_file</td>
<td>result.out</td>
</tr>
<tr>
<td>mu_strategy</td>
<td>adaptive</td>
</tr>
</tbody>
</table>

Parameter Identification

- Method: Least Squares
- Number of observation files
- Separator: Choose one observation file
Bocop: Goddard problem (execution)

Iterations from NLP solver (Ipopt)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective (scaled)</th>
<th>Objective (unscaled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>20</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>21</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>22</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>23</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>24</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>25</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>26</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
<tr>
<td>27</td>
<td>6.3413096e-01</td>
<td>6.3413096e-01</td>
</tr>
</tbody>
</table>

Number of Iterations: 27

Objective:
- Scaled: 6.3413096e-01
- Unscaled: 6.3413096e-01

Infeasibility:
- Scaled: 7.247559047530219e-13
- Unscaled: 7.247559047530219e-13

Constraint Violation:
- Scaled: 3.031348342169517e-14
- Unscaled: 5.662137425583984e-14

Complementarity:
- Scaled: 6.085134924984513e-15
- Unscaled: 6.085134924984513e-15

Overall NLP Error:
- Scaled: 7.247559047530219e-13
- Unscaled: 7.247559047530219e-13

Number of Evaluations:
- Objective: 62
- Objective Gradient: 28
- Equality Constraint: 62
- Inequality Constraint: 63
- Equality Constraint Jacobian: 28
- Inequality Constraint Jacobian: 28
- Lagrangian Hessians: 27

CPU Times:
- Ipopt (w/o Jacobian evaluations): 0.176
- Ipopt (w/ Jacobian evaluations): 0.120

EXIT: Solved to Acceptable Level.

<table>
<thead>
<tr>
<th>Objective Value</th>
<th>Time taken</th>
<th>Ipopt solver returns 1: solved to acceptable level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.341313e-01</td>
<td>0.13s</td>
<td></td>
</tr>
</tbody>
</table>
Bocop: Goddard problem (visualization)

Visualize optimal trajectory (state, control, constraints, multipliers)
Links between OCP methods: Goddard problem

Solution for local and global methods.
Links between OCP methods: principle

All 3 classes of methods should give the same (primal) solution. Additionally,

\[\text{direct method multiplier for dynamics} \]
\[\quad = \]
\[\text{costate for PMP in indirect method} \]
\[\quad = \]
\[\text{value function gradient in HJB} \]

Ex: goddard (singular arc, unconstrained)

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct λ</td>
<td>$(-50.9150, -1.8569, -0.7050)$</td>
</tr>
<tr>
<td>Indirect p</td>
<td>$(-50.9281, -1.9412, -0.6933)$</td>
</tr>
</tbody>
</table>
A few useful references

- *Practical methods for optimal control using nonlinear programming*, Betts.
- *Nonlinear Programming*, Biegler.